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Abstract—This paper presents a system for the ef-
ficient implementation of cellular automata problems
on heterogeneous HPC platforms, with separation of
the numerical models developed by domain scientists
from the low-level details that are typically handled
by experienced programmers familiar with MPI+X pro-
gramming models. We describe a framework designed
to reduce development and maintenance time required
for new applications, which can also be used to port
existing applications to a new HPC environment. We
demonstrate how to use the framework to implement
cellular automata problems while highlighting the var-
ious differences in performance between framework-
assisted and native implementations. The evaluation of
the framework shows that the performance of applica-
tion developed using the frame work is comparable to
the same application optimized for a specific architec-
ture.

Index Terms—heterogeneous computing, cellular au-
tomata, iterative stencil, structured grids, high perfor-
mance computing

I. Introduction

Many scientific applications are used to simulate
physical processes, including soil erosion, flood inun-
dation, wildfire behavior and atmospheric turbulence.
Some applications can be grouped according to their
computational patterns. In particular, the group of cel-
lular automata applications that operate on a 2D mesh
as iterative stencil computations are important because
they can be used to model a range of physical systems
studied by scientific researchers all over the world.
These applications contain several computational and

structural invariants that can be separated from the
problem-specific elements and reused for any problem
that can be expressed as cellular automata. With the
principles of cellular automata in mind, we designed a
framework to add a layer of portability, allowing appli-
cations to run efficiently on heterogeneous HPC sys-
tems using any combination of MPI, OpenMP, OpenCL
and CUDA technologies.

Such a framework would be beneficial to a significant
portion of the scientific community, as it inherently
separates the core algorithms from the parallelization
and distribution so that researchers can focus on their
domain-specific solutions without having to manage
the details of the hardware architecture and execution
environment. The framework supports a code base that
can perform efficiently on heterogeneous architectures
(comparably to a hand-optimized implementation), and
allows users to develop applications that are portable
enough to run on multiple systems without having to
modify their problem-specific code whenever they wish
to migrate it to another system. The contributions of
this paper include:

• descriptions of a generalized system and proposed
framework for cellular automata problems in het-
erogeneous HPC environments,

• some preliminary performance evaluations of an
implementation of the framework in comparison to
optimized, native versions.

II. Representative Problem: A 2D Flood Simulator

The flood simulator used for this experiment was
developed in [1]–[3], and uses a staggered grid978-1-5386-9242-4/18/$31.00 ©2018 IEEE
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computational stencil to define the domain with the
water depth at the center of the cell and x and y

directional velocities on the cell edges. The following
equations related to Manning’s measure for surface
roughness [4] are computed repeatedly over time:

Sfx = n2(uij)

√
u2

ij + v̄2ij
hij + h(i+1)j

, (1)

Sfy = n2(vij)

√
v2ij + ū2

ij

hij + hi(j+1)
, (2)

where h is the water depth, u is the grid of velocities
in the x-direction, v is the grid of velocities in the y-
direction, Sfx is the friction slope in the x-direction,
Sfy is the friction slope in the y-direction, n is the
Manning coefficient, and:

ūij =
uij + ui(j−1) + u(i−1)(j−1) + u(i−1)j

4
, (3)

v̄ij =
vij + vi(j+1) + v(i+1)(j+1) + v(i+1)j

4
. (4)

For purposes of this study, we will use a constant n

of 0.035. The model uses the upwind finite difference
numerical scheme that solves the governing set of
shallow water equations as given in [5], which yields
non-oscillatory solutions through numerical diffusion
[6]. Temporal dependencies for each iteration include
the interpolated flow rate that is derived from an input
file, where the interpolation function:

h(tr, fr, s) = fr +
f(r−1) − fr

(s− tr)(t(r−1) − tr)
(5)

is applied using hydrograph time t and flow f at row
r, and current simulation time s. Spatial dependencies
for a grid cell include specific cell neighbors of the
corresponding cell from the previous time step. By
examining Equations 1-4, we can identify the specific
dependencies. This model can be implemented as a
cellular automata problem, and the new design will
have the ability to execute on a range of heterogeneous
platforms without requiring modifications to the source
code.

III. Framework Design

The proposed framework targets cellular automata
problems that have the following characteristics:

1) Each cell in the domain is capable of storing at
least one state value from a finite (but possibly
very large) set of states.

2) A local transition function can be defined for each
cell in the domain. The resulting output of the
function will be the new state of the cell.

3) Each cell belongs to a neighborhood (stencil) of
cells that can be accessed through local memory.

4) The domain state at time t transitions into a new
state at time t+1 after each cell finishes execution
of its transition function.

5) The evolutions begin and end at times t, z, re-
spectively, where t <= z and a finite number of
time steps can be derived between t and z.

Fig. 1. Partitioning of a flood simulator domain by a.) processes,
where edge data communication occurs between process neighbors,
and each process by b.) threads in shared memory space.

Generally, these problems can be ported to HPC
environments by assigning a cell or small group of cells
to a thread and executing the transition function for
each cell in each thread, as illustrated in Figure 1b.
Large domains can be decomposed and assigned to
separate processes that may operate on separate com-
pute nodes; each process executes a smaller version
of the overall problem. Because each cell needs read
access to every cell value in its neighborhood, cells that
reside on the boundaries of a subdomain may need data
from cells in an adjacent subdomain. Thus, a series of
exchange operations can take place at the beginning
of the simulation and at the end of each time step,
where each process sends its edge data to its logical
neighbors, as shown in Figure 1a.

The framework is designed according to the iden-
tifying characteristics of the targeted problem class,
recognizing the need for concurrency and domain de-
composition. The foundational layer of the framework
is realized through a set of elements and their in-
teractions. Control flow begins within a root process



TABLE I
Interface

Name Description
ID The unique identifier of the Interface.
Name The name of the Interface.
Methods User-defined name, scope, arguments

and return value of the Interface’s
methods.

from which an arbitrary number of child processes can
be launched. For design purposes, the root process is
called the Launcher, and its child processes are called
Components.

1) Launcher: The Launcher is the entry point for all
applications built with the framework. The responsibil-
ities of the Launcher are to launch and modify Com-
ponents, establish the necessary interactions between
Components and send signals to Component processes
when needed.

2) Component: The encapsulation of related data
and communication directives is done via a Component.
The characteristics of each Component are defined by
the user; they can range from identical to distinct, from
redundant to flexible. Each Component is capable of
communicating with other Components over an Inter-
face, a set of user-defined permissions and directives.

3) Interface: By default, a Component is equipped
with a control Interface (shown in Table II), giving it the
ability to install additional, more specialized Interfaces.

Table I lists the attributes of an Interface. To access
resources of another Component, the Interface must be
used. The example below can be used to install a new
Interface to a Component:

1 InterfaceProperties: {
2 id: NULL,
3 name: "newIface",
4 methods[{
5 name: "methodOne",
6 scope: PUBLIC,
7 args: [
8 ("id", INTEGER, 123),
9 ("dir", STRING, "/tmp"),

10 ("maxval", FLOAT, 0.01)
11 ],
12 return: ("rval", FLOAT, 0.0)
13 }, {
14 name: "methodTwo",
15 scope: PRIVATE,
16 args: [
17 ("rank", INTEGER, 0),
18 ("infile", STRING, "/tmp/file.in")
19 ],
20 return: ()

TABLE II
Control Interface

Name Description
launchComponent Create and launch a new Component.
addInterface Adds a new Interface to a Component.

Return value is the Interface ID
addDatastore Associate a Datastore with one or more

Interfaces.
linkInterface Links two Components via their re-

spective Interfaces.
unlink break an existing link between two

Components, or disassociate a Datas-
tore from an Interface.

21 }]
22 }

4) Datastore: Components can access one or more
Datastores to store, modify and retrieve data. There
are two types of Datastores: cached, which is loaded
into local memory and linked, where a file handle is
maintained. A Datastore must be associated with at
least one Component, and can attach to one or more
Interfaces within a Component. A Datastore has access
control mechanisms, where the user can define access
by authorized interfaces only. Concurrent access is
controlled via write locks.

The object representation of a Datastore called
topogrid, associated with Interfaces 1 and 2 can be
given as such:

1 DatastoreProperties: {
2 datastoreID: 0,
3 datastoreType: LINKED,
4 datastoreName: "topogrid",
5 datastorePerms: [(1, 1, 1), (2, 1, 1)]
6 datastoreDescriptor: {
7 headerBytes: 4096,
8 headerFormat: [(8, 128), (12, 256)],
9 bodyBytes: 16777216,

10 bodyFormat: [(16384, 1024)]
11 }
12 }

Table III gives a list of the other values; it is a linked
Datastore, where both associated Interfaces have read
and write permissions, the header is 8 lines of 128
bytes plus 12 lines of 256 bytes each, and the body
is 16384 lines of 1024 bytes each.

A. Framework Operational Layer

An overview of the framework is given in Figure 2,
including the operational layer where the Components
are named according to their responsibilities. We used
four Components to build the layer- Discover, Partition,
Compute and Update.

Applications can sometimes contain a large amount
of setup code near the entry point. For example, the



TABLE III
Datastore

Name Description
ID A unique index
Type LINKED for disk file, CACHED for in-

memory data.
Name A human readable name.
Perms Array of triples (id,r,w), where each

triple is an interface on the Component
identified by ’id’, the ’r’ and ’w’ are
boolean values for read, write permis-
sions, respectively.

Descriptor Information about how to read the
data.

HeaderBytes The number of bytes in the header.
HeaderFormat A sequence of ordered pairs (n, z),

where ’n’ is the number of values and
’z’ is the size in bytes of each value.

file reading process can be cumbersome, or the input
functions require the filenames to follow certain nam-
ing conventions and expect the data to follow a specific
format; to read a file in a different format, the user code
may require some modification. To eliminate this bur-
den, all operations related to initialization are grouped
into a Component called Discover, including gathering
the characteristics of the execution environment and
input data, querying the system for installed software,
and reading configuration files provided by the user
that specify the size of the data, length of simulation,
number of simulations, output interval and requested
device type.

Many of the simulation control variables are either
hard-coded or expected as positional arguments to the
executable program. To add, remove or define new
parameters, the source code would need to be modi-
fied, sometimes affecting many different blocks of code
throughout the application. After Discover performs its
assigned tasks, it will package the data into an internal
representation and pass it to another component called
Partition, which is responsible for partitioning and
mapping operations. Partition performs validation on
the data received from Discover and will attempt to
launch multiple processes in a manner requested by
the user. This validation process is more rigid than
Discover, as its input is equivalent to an intermediate
language, but also more robust. Partition will generate
an error code if validation fails, and control returns to
Discover. If a maximum number of attempts fail, the
simulator will gracefully exit. Otherwise, each process
launched by Partition will be handled by Compute.

The Compute component contains an implementa-
tion of the underlying numerical model. Compute can
utilize threads, and is typically called on each cell in the

TABLE IV
Discover Component

Element Name Element Type Description
Reader Interface File reading
Writer Interface File writing
Formats Datastore File formats for Reader/Writer
Targets Datastore List of available compute devices
Stencils Datastore List of compute stencils

domain, with access to the cell’s neighborhood in local
memory. The Update component is a hook that is exe-
cuted after each time step of the simulation. The user
can supply a configuration file that specifies operations
to be taken at the end of each iteration. For example,
Update can calculate the real time interval for next
generation or time step, determine whether or not to
perform output operations, enforce a synchronization
point, or generate some aggregate statistics about the
data domain based on its current state.

Fig. 2. Overview of the framework, showing its main Components
and high-level interactions, their respective Interfaces and Datas-
tores (shown as cubes d1 and d2). The smaller circle at the bottom
center is the Launcher, which serves as a synchronization point.

B. Discover

The flood simulator accepts a small range of input
files in both ASCII and binary formats. It supports
MPI+OpenMP and MPI+CUDA environments, so Dis-
cover will check for access to CPU cores and GPU
devices as specified by the user. Based on Equations
1-4, a Moore neighborhood is sufficient for local com-
putations.



TABLE V
Partition Component

Element Name Element Type Description
SimProps Interface Requested simulation parameters
PartMap Interface Partition to device mappings
SimData Datastore Parameters for all simulations

TABLE VI
Compute Component

Element Name Element Type Description
Kernel Interface Operations for active kernel
Domain Datastore Cell data available to active kernel

C. Partition

After Discover performs its assigned tasks, it will
package the data into an internal representation and
pass it to another component called Partition, which
is responsible for partitioning and mapping operations.
Partition performs validation on the data received from
Discover and will attempt to launch multiple processes
in a manner requested by the user. This validation pro-
cess is more rigid than Discover, but also more robust.
Partition will generate an error code if validation fails,
and control returns to Discover. If a maximum number
of attempts fail, the simulator will gracefully exit.

D. Compute

The Compute component contains an implementa-
tion of the numerical model supplied by the user.
Compute can utilize threads, and is typically called
on each cell in the domain, with access to the cell’s
neighborhood in local memory. The flood simulator will
execute the kernel using one GPU core per cell when
using the GPU, and one CPU core per line when using
OpenMP.

E. Update

The Update component is a hook that is executed
after each time step of the simulation. The user can
supply a configuration file that specifies operations to
be taken at the end of each iteration. For example, the
output for the flood simulator is specified by a fixed
interval over the total iterations, so we add a print
function to the list of hooks and a conditional test for
Update to perform after each iteration to determine if

TABLE VII
Update Component

Element Name Element Type Description
Hooks Interface Conditional expressions, applied per iteration
Conditions Datastore Results of conditionals applied by Hooks

the interval has been met. If the conditional returns
true, Update will call a print function to generate an
output file. There is an additional hook required for the
flood simulator that executes an implementation of the
function given in Equation 5 to compute the flow value
for the next iteration.

IV. Experimental Setup

The experiments described in this section will com-
pare hand-tuned (HT) implementations to framework-
assisted (FA) implementations. The results will show
raw performance, computation and communication
overheads. Run time in seconds, speedup, and Mega-
cells/sec (Mc/s) will be used to compare the compu-
tational efficiency of all the implementations. Higher
Mc/s corresponds to higher performances, since more
cells are dispensed of in the same time reference
window. This measure allows capturing the average
speed during the computation and it is particularly
useful in case of real domains, where the number of
affected cells can significantly be modified along the
simulation time. Mc/s (as m) is computed according to
the following equation:

m =
rki

t
∗ 106, (6)

where r is the number of rows in a 2D grid, k is the
number of columns in a 2D grid, i is the total number of
iterations, and t is the number of wall seconds it took
for the simulation to complete.

A. Environment

For our simulation runs, we used a heterogeneous
HPC cluster consisting of 4 nodes, each having Intel
Xeon E5-2680 processors in 2 sockets, 10 cores each
(with hyper-threading), for a maximum of 160 dedi-
cated CPU processes across all 4 nodes. The hetero-
geneity is introduced with the GPGPU arrangement of
each node, where Node 1 is equipped with a single
Nvidia Tesla K40M (K40) and Node 2 with two K20M
(K20) GPUs. The GPUs on Nodes 3-4 will not be used
for these simulations. Additionally, a desktop machine
was used for the portability experiment, equipped with
a AMD A-10 6800K APU and two Radeon HD 7750
GPUs.

The applications were written in C, C++, with
OpenCL 1.2 and CUDA 9.1 for the NVidia GPU ker-
nels, and were compiled with GNU Compiler Collection
version 4.7.2. The MPI implementation was OpenRTE
1.4.5 and the operating system was Debian GNU Linux
7. The software environment for the desktop system
uses AMD APP 3.0 on Ubuntu 14.04.5 LTS.



Fig. 3. Comparison of MPI+GPU results for hand-tuned versus
framework-assisted versions of a 2D flood simulator using an increas-
ing number of processes and process mappings.

Fig. 4. Comparison of MPI+GPU communication time for four
versions of a 2D flood simulator using an increasing number of
processes and process mappings.

V. Results and Analysis

Figure 3 shows the results in Mc/s for both the
HT and FA simulations. As expected, the single GPU
versions perform better than the double GPU versions,
due in large part to the communication overhead when
exchanging neighborhood data. While the results in
general for single GPU and double GPU remain similar
between the HT and FA versions up to 8 processes,
the FA results drop off for 12 processes. Noting the
performance of the original version approaches a con-
stant value when increasing the number of processes
per device, the devices experience a communication
bottleneck at or around 12 processes, and this effect is
more prevalent in the FA version. Communication times
are shown in Figure 4. The HT version makes better
use of native CUDA functionality that are specific to
the execution environment (for example, block and
grid sizes are hard-coded for a specific GPU device).
Migration to a different environment could decrease
performance significantly while performance of the FA
version remains relatively unchanged.

Fig. 5. Performance comparison of a framework assisted 2D flood
simulator using MPI+GPU on two different architectures. Where the
total processes equal 1, only a single GPU is used; otherwise the
processes are equally balanced over 2 GPUs.

In Figure 5, we plotted the Mc/s on a logarithmic
scale, since the K20 is nearly an order of magnitude
more powerful than the HD 7750 and our interest is
mainly in the trend. From this preliminary result we
see a common trend in performance increase as the
number of processes increase.

VI. Related Works

Several approaches to optimized code generation for
stencil problems have been explored [7]–[9], including
some C++ libraries.

Thrust is a C++ template library that abstracts and
attempts to optimize a group of commonly used CUDA
C operations to provide the programmer a way to im-
plement certain parallel algorithms at a high level, ben-
efit from performance optimizations over native code
and maintain interoperability with the native CUDA
libraries [10]. Thrust uses the Structure of Arrays
pattern to ensure regular accesses are able to coalesce.
A special iterator is incorporated for the purpose of
encapsulation into tuples on a given range via zip
function, and is shown to be 2.85 times faster than a
comparable Array of Structures implementation.

Kokkos is a C++ library targeted towards many-core
devices that offers its users the ability to abstract the
parallel dispatch model from user-specific codes, pro-
viding a layer over multidimensional arrays that allows
the changing of access patterns at compile time [11].
Kokkos supports SIMD operations using parallel_for
and parallel_reduce functors, and gives the user the
ability to change layouts from row-major to column-
major without modifying the indexing scheme in the
user code.

VII. Conclusion

In this paper, we proposed a framework designed for
a class of scientific problems that can be represented



by cellular automata that can operate portably and
efficiently on HPC systems. We have demonstrated the
practical application on a multi-node heterogeneous
cluster, with performance results comparable to results
obtained under a hand tuned version. We also showed
that the same framework can operate on different
architectures and produce a similar trend in perfor-
mance. Future work activities in this area include:

• expanding the preliminary experiments to observe
more operating environments,

• adding support for adaptive partitioning, where
domains can be repartitioned after the initial dis-
tribution,

• adding multiscalar processing support for larger
datasets,

• adding capabilities to utilize CUDA non-default
streams to reduce communication overhead,

• extending support for multiple synchronization
points to allow for lookahead and dramatically
reduce overall run time,

• preparing a software package for generalized us-
age within the domain of grid simulations and
cellular automata.
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