
Performance Evaluation of a Two-Dimensional Flood Model on
Heterogeneous High-Performance Computing Architectures

Md Bulbul Sharif
Tennessee Technological University

Cookeville, Tennessee, USA
msharif42@students.tntech.edu

Sheikh K. Ghafoor
Tennessee Technological University

Cookeville, Tennessee, USA
sghafoor@tntech.edu

Thomas M. Hines
Tennessee Technological University

Cookeville, Tennessee, USA
tmhines42@students.tntech.edu

Mario Morales-Hernández
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
moraleshernm@ornl.gov

Katherine J. Evans
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

evanskj@ornl.gov

Shih-Chieh Kao
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

kaos@ornl.gov

Alfred J. Kalyanapu
Tennessee Technological University

Cookeville, Tennessee, USA
akalyanapu@tntech.edu

Tigstu T. Dullo
Tennessee Technological University

Cookeville, Tennessee, USA
ttdullo42@students.tntech.edu

Sudershan Gangrade
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

gangrades@ornl.gov

ABSTRACT
This paper describes the implementation of a two-dimensional
hydrodynamic flood model with two different numerical schemes
on heterogeneous high-performance computing architectures. Both
schemes were able to solve the nonlinear hyperbolic shallow water
equations using an explicit upwind first-order approach on finite
differences and finite volumes, respectively, and were conducted
using MPI and CUDA. Four different test cases were simulated
on the Summit supercomputer at Oak Ridge National Laboratory.
Both numerical schemes scaled up to 128 nodes (768 GPUs) with a
maximum 98.2x speedup of over 1 GPU. The lowest run time for
the 10 day Hurricane Harvey event simulation at 5 meter resolution
(272 million grid cells) was 50 minutes. GPUDirect communication
proved to be more convenient than the standard communication
strategy. Both strong and weak scaling are shown.

CCS CONCEPTS
• Computing methodologies → Massively parallel and high-
performance simulations.

KEYWORDS
2D flood model, flood simulation, GPU programming, CUDA, high-
performance computing, Multi-GPU

ACM Reference Format:
Md Bulbul Sharif, Sheikh K. Ghafoor, Thomas M. Hines, Mario Morales-
Hernández, Katherine J. Evans, Shih-Chieh Kao, Alfred J. Kalyanapu, Tigstu
T. Dullo, and Sudershan Gangrade. 2020. Performance Evaluation of a Two-
Dimensional Flood Model on Heterogeneous High-Performance Computing

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PASC ’20, June 29-July 1, 2020, Geneva, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7993-9/20/06. . . $15.00
https://doi.org/10.1145/3394277.3401852

Architectures. In Proceedings of the Platform for Advanced Scientific Comput-
ing Conference (PASC ’20), June 29-July 1, 2020, Geneva, Switzerland. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3394277.3401852

1 INTRODUCTION
More than 21% of the global population live within 30 km of a coast-
line [13] and are at risk of being affected by flooding. In 2017, the
record-breaking Hurricane Harvey caused $125 billion in property
damage in the Houston metropolitan area and Southeast Texas [5]
[20]. Hydrodynamic flood models have been applied to simulate
floods for more than 50 years [6], but with the increase in computa-
tional capabilities, more accurate and rapid hydraulic models have
emerged that can provide a more reliable basis for decision-making
in flood risk management.

Traditionally, 1D flood models, such as the Hydrologic Engineer-
ing Center’s River Analysis System (HEC-RAS) [3] or MIKE 11
[9], have been used, which are computationally less expensive in
terms of total run time. However, 1D models, especially in urban
flood-prone areas, cannot properly represent flood wave propaga-
tion over floodplains in events that exceed the predefined 1D river
channels [35]. On the other hand, 2D models, such as HEC-RAS 2D
[4] or SRH-2D [23], eliminate the primary limitations of 1D models
by allowing topographical representation of higher-order and pref-
erential flood pathways [35]. The main drawback of 2D models is
their computational burden, and the simulation of flooding over a
large area at high resolution in a reasonable amount of time requires
high-performance computing (HPC) [24] [18]. Current large graph-
ics processing unit (GPU)–based systems such as Summit [32] can
simulate flooding at high resolution. Such simulation requires that
the code be scalable over multiple GPUs in a distributed, heteroge-
neous computing environment. Few studies in the literature have
reported on using multiple GPUs to solve shallow water equations
[8], [39], [41] or to simulate floods or tsunamis [28], [33], [26] and
[7]. This paper describes one of the few studies in which multiple
GPUs were used to simulate a 2D flood model.

This is the accepted version of the paper. The final version will appear in the proceedings of PASC’20.

https://doi.org/10.1145/3394277.3401852
https://doi.org/10.1145/3394277.3401852

PASC ’20, June 29-July 1, 2020, Geneva, Switzerland Sharif et al.

One of the objectives of our current research is to develop a
performance portable architecture agnostic software framework
for regularly structured grid-based simulation applications. The
2D flood simulation application is the first step toward that goal.
We have implemented the 2D flood model using MPI, OpenMP,
and CUDA for execution on a single node (using OpenMP), multi-
ple nodes (using MPI + OpenMP), or on multiple nodes with GPU
(using MPI + OpenMP + GPU). In this paper, we evaluate our imple-
mentation on Summit using multiple nodes with MPI and CUDA.

The contributions of this study include (1) implementation of a
2D flood simulation model using two different numerical schemes
in a heterogeneous multi-GPU HPC environment, (2) simulation
of a large-scale 10 day Hurricane Harvey flood event at 5 meter
resolution (272 million grid cells) on Summit with up to 128 nodes
(768 GPUs), (3) demonstrating the possibility of large-scale, high-
resolution flood simulation, (4) identifying both strong and weak
scaling with multiple GPUs, and (5) performance analysis and com-
parison of two different numerical schemes and GPUDirect [31]
acceleration technology.

2 RELATEDWORKS
Although GPU computing has been incorporated into a wide range
of computational and modeling applications with success, it has
found limited application in computational fluid dynamics and flood
modeling. In 1966, the Stanford watershedmodel IV [6], now known
as HSPF, was first introduced and applied computer modeling to
simulate floods. In [17], a real-time visual simulation of diverse
dynamic phenomena using a GPU was presented and demonstrated
a speedup of 25x on an NVIDIA GeForce 4 as compared with the
same simulation run on a Pentium CPU. A visual simulation study
of shallow water waves using a GPU [16] reported a speedup of 15x
to 30x compared with a CPU simulation. A speedup of 112x using
a diffusive wave flood modeling approach was compared with a
CPU model in [24]. A study of the computational enhancement
of a GPU-enabled 2D flood model was described in [19] in which
the researchers achieved an 88x speedup on a Tesla C1060 GPU.
An efficient implementation of a state-of-the-art high-resolution
explicit scheme for shallow water equations on a GPU was reported
in [2] and demonstrated computation of the first 4000 s of the
Malpasset dam-break case in 27 s. Additionally, the implementation
of a finite volume method to solve 2D shallow water equations on
a GPU was described in [22]. The strategy was designed to work
efficiently with unstructured meshes, which are widely used in
many fields of engineering. A shallow water equations parallel
numerical scheme suitable for a GPU described in [38] claimed to
achieve speedups two orders of magnitude over a single-core CPU.
A few years later, the same authors [37] also used a GPU-parallel
numerical model to solve 2D shallow water equations based on
Block-Uniform Quadtree (BUQ). They claimed that a very large
domain can be simulated (38 km river reach) with high resolution
(2 m). Other researchers used a GPU for their flood modeling and
reported good improvement in performance compared with a CPU
[34], [1], [25] and [15].

One of the major drawbacks of the studies mentioned above is
that they are limited to a single GPU. A state-of-the-art shallow
water simulator running on multiple GPUs was described in [33].

The simulator showed a rate of over 1.2 Gigacells per second using
four Fermi-generation GPUs. In [7] the authors proposed a 2D
numerical scheme to simulate tsunamis generated by landslides.
They claimed good weak and strong scaling using up to 24 GPUs
in real and artificial problems. In another study [26], researchers
tried to present a practical implementation of a 2D flood simulation
model using hybrid distributed-parallel technologies including MPI,
OpenMP, and OpenCL. They used a maximum of 8 GPUs for their
experiments and reported a maximum performance of 3 Gigacells
per second.

3 NUMERICAL SCHEMES
Two different numerical schemes are compared in this study: a
finite difference (FD) scheme and a finite volume (FV) scheme. They
are described in this section.

3.1 FD Scheme
The first numerical algorithm used in this model is an upwind fi-
nite difference scheme that solves nonlinear hyperbolic shallow
water equations using a first-order accurate scheme. These equa-
tions are derived from the Navier-Stokes equations by integrating
the horizontal momentum and continuity equations over a depth
that is often referred to as the depth-averaged or depth-integrated
shallow water equations. The non-conservative form of the partial
differential equations [36] [18] are as follows:

Continuity equation
∂h

∂t
+
∂uh

∂x
+
∂vh

∂y
= 0 , (1)

Momentum equation in x-direction
∂u

∂t
+ u
∂u

∂x
+v
∂u

∂y
+ д
∂H

∂x
+ дSf x = 0 , (2)

Momentum equation in y-direction
∂v

∂t
+ u
∂v

∂x
+v
∂v

∂y
+ д
∂H

∂y
+ дSf y = 0 , (3)

where h is the water depth, H is the water surface elevation, u is the
velocity in the x-direction, v is the velocity in the y-direction, t is
the time, g is the acceleration due to gravity, Sf x is the friction slope
in the x-direction, and Sf y is the friction slope in the y-direction. An
upwind finite difference scheme is used to discretize the governing
equations (1)–(3) following [19]. Friction terms Sf x and Sf y are
computed as

Sf x = n
2(ui j)

√√
u2
i j + v̄

2
i j

hi j + h(i+1)j
, (4)

Sf y = n
2(vi j)

√√
v2
i j + ū

2
i j

hi j + hi(j+1)
, (5)

ūi j =
ui j + ui(j−1) + u(i−1)(j−1) + u(i−1)j

4
, (6)

v̄i j =
vi j +vi(j+1) +v(i+1)(j+1) +v(i+1)j

4
, (7)

where n is the Manning’s roughness coefficient. The time step size
∆t is restricted according to the Courant-Friedrich-Lewy (CFL)
condition

Performance Evaluation of a Two-Dimensional Flood Model on Heterogeneous HPC Architectures PASC ’20, June 29-July 1, 2020, Geneva, Switzerland

∆xi =
dx

|u |i +
√
д(hi + ϵ)

, (8)

∆yi =
dy

|v |i +
√
д(hi + ϵ)

, (9)

∆t = CFLmin
i
(∆xi ,∆yi) CFL = 0.1 , (10)

where CFL represents Courant value and ϵ = 0.001. This scheme
has been tested and validated in [19].

3.2 FV Scheme
The second numerical scheme is also based on 2D shallow water
equations but in a conservative differential form:

∂U
∂t
+
∂F
∂x
+
∂G
∂y
= Sb + Sf , (11)

U =
©«
h

qx

qy

ª®®¬ F =
©«

qx

q2
x
h
+

1
2
дh2

qxqy

h

ª®®®®¬
G =

©«
qy

qxqy

h
q2
y

h
+

1
2
дh2

ª®®®®®¬
Sb =

©«
0

−дh
∂z

∂x

−дh
∂z

∂y

ª®®®®®¬
Sf =

©«
0

−
дn2

h7/3qx
√
q2
x + q

2
y

−
дn2

h7/3qy
√
q2
x + q

2
y

ª®®®®®¬
,

(12)

where U is the vector of conserved variables including the water
depth, h, and the unit discharges in x and y directions, called qx
and qy , respectively. Moreover, F andG are the vector of fluxes, and
Sb and Sf contain the bed and roughness source terms, respectively,
with z being the bed elevation. Again, roughness is modeled using
Manning-Gauckler’s law.

In this scheme, a finite upwind volume explicit system is imple-
mented based on the Roe’s linearization. A squared mesh is used,
denoting ∆x as the grid spacing. The derivation of the numeri-
cal scheme follows [29], [27] for the fluxes and bed slope source
terms, including the correct estimation of bed slope source terms at
each edge. Nevertheless, a different discretization for the roughness
terms is considered that follows [42], in which an implicit formula-
tion is chosen. Therefore, a two-step algorithm is proposed for the
update of a cell i from time tn to time tn+1:

U⋆
i = Uni −

∆t

∆x

4∑
k=1

3∑
m=1

[
(λ̃α̃ − β̃b)ẽ

]n
m,k︸ ︷︷ ︸

(#)

(13)

Un+1
i = F (Uni ,U

⋆
i), (14)

where α̃ and β̃b are the fluxes and slope source term linearizations
and λ̃ and ẽ are the eigenvalues and eigenvectors of the system of
equations, respectively. On the other hand, F is defined as follows:

F 1 = h⋆,

F 2 = −(qx
⋆)

(
1 −

√
1 + 4Sf

2Sf

)
,

F 3 = −(qy
⋆)

(
1 −

√
1 + 4Sf

2Sf

)
,

(15)

where

Sf =
∆tдn2

√
(qx⋆)2 + (qy⋆)2

(hn)7/3 . (16)

Being an explicit scheme, the time step size ∆t is restricted again
by the CFL condition:

∆t = CFL
∆x

max
i

{���qx
h

���
i
+

√
дhi ,

���qy
h

���
i
+

√
дhi

} CFL ≤ 0.5 (17)

More details on the numerical scheme can be found in [29], [27],
and [42]. The validation of accuracy can also be found in [28].

4 IMPLEMENTATION
The general flowchart of our implementation is shown in Figure 1.
Parallelization is done with MPI, with as many ranks as there are
GPUs.

Figure 1: Parallel flowchart

PASC ’20, June 29-July 1, 2020, Geneva, Switzerland Sharif et al.

4.1 Input
There are three types of data associated with our model.

• Topographical data (e.g., Digital Elevation Model [DEM]) is
an input with a uniform grid structure [12].

• A surface roughness coefficient (Manning’s n value) and
source boundary information are provided as an input data
set [10]. Typically, the roughness of the entire domain is
represented using a single Manning’sn value in 2Dmodeling
applications [18], but our model can incorporate spatially
varied surface roughness coefficients. For the purpose of
performance evaluation, we only use a single Manning’s n
value across all grids in this study.

• The flow hydrographs provide water inflows to the domain
that can be developed from a hydrological model, dam break
model, or direct observations [10]. There can be single or
multiple water source locations. After each time step, the
depth values at each source location are calculated from the
flow hydrograph input and updated for the next iteration.

4.2 Grids
Data are stored in 2D grid cells. Each cell has two constant values
that do not change over the simulation: elevation and Manning’s n
value. Three values are updated at each cell during each time step:
water depth and velocities in both x- and y-directions. The stencil
(the neighboring cells needed to evolve the solution in time) for
each numerical scheme is displayed in Figure 2.

(a) (b)

Figure 2: Grid stencil for (a) FD and (b) FV schemes

The grids are partitioned using a row-wise strategy over the
MPI ranks, and double-precision floating-point numbers are used
to store the values at each grid cell.

4.3 Step Size
Our model offers both variable and fixed time-step size. Although a
variable time step based on the CFL condition offers the maximum
allowable time-step size that makes the solution stable, the next
∆t must be agreed upon by all ranks that require further commu-
nication. In our workflow, each rank first calculates the next local
minimum ∆t from all cells in its partition. The global minimum ∆t
is then identified and applied across all ranks.

4.4 Halo Exchange
As data is partitioned row-wise, the halo size is equal to the number
of columns. Non-blocking communication has been used to perform
the halo exchange by using MPI_Isend and MPI_Irecv. By using
non-blocking communication, our application creates a request for

communication for send and/or receive, gets back a handle, and
then terminates. Two communication steps are needed to finish
the halo exchange between all the ranks. In the first step, all the
ranks i < N − 1 send halo data to rank i + 1, where N denotes
the total number of ranks. In second step, all the ranks i > 0 send
halo data to rank i − 1. MPI_Wait is used to check whether the
communication has finished.

4.5 Kernels
Each computation step executed on the GPU is assigned to a CUDA
kernel. There is a total of 8 kernels in the FD Scheme and 14 in
the FV Scheme. There are separate kernels for computation of
cell variables (water velocity, volume, height), copying halo cells,
computing minimum time step size, updating boundary conditions,
updating flow locations, and few other utility functions. Although it
is possible to combine some of the kernels, separate kernels provide
better code maintainability.

4.6 Output
The water height and velocity can be written at user-defined time
intervals. Because output in ASCII is computationally intensive
[28], we simply store our output in binary format and then use a
post-processing script to convert it back to ASCII (when needed).
As an example, Figure 3 shows the simulated maximum inundation
depths for the Hurricane Harvey flood event using the FV model.

Figure 3: Simulated maximum inundation depths for Hurri-
cane Harvey flood event

5 EXPERIMENTAL SETUP
The experimental setup is designed to measure and evaluate key
performance metrics for specific test cases relevant to the commu-
nity.

5.1 Key Performance Metrics
5.1.1 Billion Lattice Updates per Second. Million Lattice Updates
Per Second (MLUPS) is a commonly used measure of simulation

Performance Evaluation of a Two-Dimensional Flood Model on Heterogeneous HPC Architectures PASC ’20, June 29-July 1, 2020, Geneva, Switzerland

efficiency across model implementations in the flood research com-
munity. In this study we use Billion Lattice Updates per Second
(BLUPS), which are calculated as follows:

BLUPS =
Nдc × Nts

T × 109 , (18)

where Nдc is the number of grid cells, Nts is the number of time
steps used, and T is the run time of the simulation.

5.1.2 Speedup. We define Speedup as a measurement used to an-
alyze how fast simulation is in comparison to the execution time
using 1 GPU:

Speedup =
T1
Tn
, (19)

whereT1 is the execution time using 1 GPU andTn is the execution
time using n GPUs.

5.1.3 Communication Time. We define Communication Time (CT)
as the total time required for any data exchange between multiple
MPI processes along with data transfer between host and device:

CT = Th +Tr +Tm , (20)
where Th is the total time for halo exchanges over all iterations,
similarly Tr is the total for MPI reductions, and Tm is time for data
transfer between host and device. These times are measured using
individually timer and equation (20) is used to compute the total
communication time.

5.2 Benchmark Test Cases
We used four different test cases to evaluate our FD and FV imple-
mentations. Table 1 summarizes the characteristics of all test cases.
The binary output is generated at the final step of simulation for
all test cases to avoid the uncertainty associated with data output.

Table 1: Total cell size and simulation time of all test cases

Test Case Sources No of Cells Time(s)
Conasauga 300 4,852,675 432,000
Harvey 30m 69 7,562,646 864,000
Harvey 10m 69 68,080,474 864,000
Harvey 5m 69 272,321,896 864,000

5.2.1 Conasauga River Basin. The first test case represents the
Conasauga River Basin, which is located in southeast Tennessee
and northwest Georgia, USA. The Conasauga River Basin has a
drainage area of approximately 1883 sq. km. The flood model has
300 inflow locations for a 5 day event, which are used as upstream
and internal boundary conditions. The flow hydrographs used in
this study were created from the annual maximum discharge events
[11]. The topography of the Conasauga River Basin is represented
by a 30 m resolution DEM made of 2,659 rows and 1,825 columns.

5.2.2 Hurricane Harvey. The other three test cases simulate a 10
day flood event that took place in August 2017 due to catastrophic
rainfall-triggered flooding associated with Hurricane Harvey in the
metropolitan area of Houston and Southeast Texas [40]. There are
69 inflow locations, and the elevation input data come from three
different DEM resolutions (30 m, 10 m, and 5 m). The number of
cells for each configuration is displayed in Table 1.

5.3 Hardware Specifications
All our experiments were run on Summit [32], the most powerful
supercomputer at Oak Ridge National Laboratory (ORNL). Summit
consists of 4,608 nodes, each with two IBM Power 9 processors, 512
GB of DDR4 RAM, and six NVIDIA Volta V100 GPUs. The proces-
sors are connected to the GPUs by NVIDIA’s NVLink interconnect.
Each link has a peak bandwidth of 25 GB/s (in each direction), and
because there are two links between a processor and a GPU, data
can be transferred from GPU-to-GPU and CPU-to-GPU at a peak
rate of 50 GB/s. We used up to 128 Summit nodes (768 GPUs) for
our experiments.

5.3.1 GPUDirect. The standard method of data transfer between
GPUs usually follows three steps: (1) a device-to-host transfer to
the host’s RAM, using cudaMemcpy, (2) data exchange among
appropriate MPI processes, and (3) a host-to-device transfer using
cudaMemcpy as shown in figure 4a. However, Summit has an inter-
node InfiniBand [14] interconnect with GPUDirect-RDMA [30] to
speed up GPU-to-GPU transfers. With this technology, the data go
directly from the GPU to the network and then to the destination
GPU without doing any device-to-host or host-to-device transfers
as shown in Figure 4b.

(a)

(b)

Figure 4: (a) Standard MPI GPU to remote GPU (b) MPI GPU
to remote GPU using GPUDirect-RDMA

We used the CUDA-aware MPI [21] library with GPUDirect to
send GPU buffers instead of host buffers. CUDA-aware MPI can
more efficiently exploit the underlying protocol and can automati-
cally utilize GPUDirect acceleration technologies.

5.4 Configurations
All the experiments were carried out using standard host-device
transfers or GPUDirect transfers for exchanging the halo rows
between MPI ranks. Combined with the two numerical schemes,
this gives four configurations: FDS (finite difference standard host-
device transfer), FDG (finite difference GPUDirect), FVS (finite vol-
ume standard host-device transfer) and FVG (finite volume GPUDi-
rect).

PASC ’20, June 29-July 1, 2020, Geneva, Switzerland Sharif et al.

6 RESULTS AND ANALYSIS
Note that all the simulations used one MPI process per GPU using
six MPI processes per node (Summit contains six GPUs per node).

6.1 Scaling
6.1.1 Weak Scaling. Figure 5 shows the performance of the three
Hurricane Harvey test cases (i.e., three resolutions) with the number
of GPUs for a fixed problem size per GPU with four configurations.
We observe that for all configurations, performance increases as the
number of GPUs increases. For example, in the case of FVG when
we use a 9x input size (10 m resolution), performance increases by a
factor of 7.13 (from 17.9 to 127.6 BLUPS). Furthermore, a 36x input
size (5 m resolution) shows a factor of 22.28 increase. The other
three configurations show similar behaviors.

Figure 5: Performance of Hurricane Harvey test cases with
the number of GPUs for a fixed problem size per GPU

6.1.2 Strong Scaling. Figure 6 shows the performance of four test
cases and four configurations with different numbers of GPUs.
Conasauga has the smallest domain and scales the least, stagnating
after 24 GPUs for all configurations. The slightly larger Harvey
30 m case scales out to 8–16 nodes (48–96 GPUs), depending on
the configuration. The Harvey 10 m domain is 9x larger than the
Harvey 30 m domain, thus showing increasing performance out to
64 nodes (384 GPUs) from 17.69–140.65 BLUPS in the case of FVG
configuration. We also see our first scaling differences between the
configurations. The GPUDirect version of each numerical scheme
becomes increasingly better than its standard counterpart. The Har-
vey 5 m case continues the trend and scales out to 128 nodes (768
GPUs) from 36.49–469.4 BLUPS in the case of FDG configuration.
As long as the number of GPUs increases, the GPUDirect configura-
tions become even more dominant, achieving 50–70% more BLUPS
than the standard configurations.

6.2 Runtime
The total runtime of the simulation is often more important than
the efficiency of the scaling. Figure 7 shows the total runtime for
the different test cases and configurations. Note the apparent incon-
sistency in Figure 6, where the FD scheme achieves higher BLUPS

(than the FV scheme) but takes longer to run. The main reason is
that the FD scheme needs a lower Courant value (0.1 versus 0.5)
to remain stable. Thus, the ∆t is smaller and more iterations are
needed.

Conasauga and Harvey 30 m are both small enough that it would
be reasonable to run them on a single node. Harvey 10 m and
Harvey 5 m are more computationally challenging. Here a single
node (6 GPUs) Harvey 10 m run takes over 10 hours. Using 64 nodes
(384 GPUs), the FVG configuration drops to 18 minutes. For Harvey
5 m, the large differences become 80 hours versus 50 minutes.

6.3 GPUDirect
Figures 6 and 7 suggest that the GPUDirect approach is always
equal to or better than the standard configuration. To quantify this,
Figure 8 shows just the communication time of the test cases and
configurations. We can see that the GPUDirect communication time
is always lower than the standard communication time, being as
low as one-quarter of the standard time for large test cases. Note
that the communication time does not increase considerably with
more nodes for a given configuration and test case.

6.4 Speedup
Figure 9 shows the Speedup with respect to the number of GPUs
for all four test cases and configurations. As observed, Harvey 5 m
shows the maximum increase in speedup (e.g., FVG using 768 GPUs
shows a speedup of 98.2). In addition, FV scheme implementation
has a higher speedup value than the FD scheme, mainly because
of higher computationally expensive kernels for each time step.
We can also deduce from Figure 9 that a higher resolution usually
implies a higher speedup.

7 CONCLUSION AND FUTUREWORK
We implemented a two-dimensional flood simulation using two nu-
merical schemes and simulated four test cases on Summit, ORNL’s
most powerful supercomputer. Both standard inter GPU communi-
cation and GPUDirect for halo exchange were used. All implemen-
tations showed reasonable weak and strong scalability (up to 768
GPUs for the largest test case). In all cases, the GPUDirect showed
better computational performance than the standard configuration.
The difference in performance was minimal when a lower number
of GPUs were used but increased as the number of GPUs increased.
Based on our experimental results, we can conclude that 2D stencil-
type codes using GPUDirect for halo exchange will perform better
on Summit than the standard default communication. Addition-
ally, the computational performance of the finite volume scheme is
better than the finite difference scheme.

For work division, we used 1D row-wise partitioning rather than
a different strategy that can be used to exchange halo between
MPI processes (e.g., a higher-order partitioning method). Further-
more, knowledge of the underlying hardware devices is essential
to the development of software intended for large-scale grid sim-
ulations. Our future efforts will include overlap of halo exchange
with stencil computation, the development of a set of generalized
data structures supporting several different partitioning strategies,
run-time configuration parameters matching a selected partitioning
strategy with a complementary mapping strategy, and a simple,

Performance Evaluation of a Two-Dimensional Flood Model on Heterogeneous HPC Architectures PASC ’20, June 29-July 1, 2020, Geneva, Switzerland

Figure 6: Performance of test cases with an increasing number of GPUs

Figure 7: Runtime of test cases with an increasing number of GPUs

PASC ’20, June 29-July 1, 2020, Geneva, Switzerland Sharif et al.

Figure 8: Communication time of test cases with an increasing number of GPUs

Figure 9: Speedup of test cases with an increasing number of GPUs

Performance Evaluation of a Two-Dimensional Flood Model on Heterogeneous HPC Architectures PASC ’20, June 29-July 1, 2020, Geneva, Switzerland

user-friendly meta computing API so that domain scientists will be
able to access efficient hardware without needing to have the level
of expertise that is required today.

8 ACKNOWLEDGMENTS
This researchwas supported by the USAir Force NumericalWeather
Modeling Program and the Center of Management, Utilization,
and Protection of Water Resources at Tennessee Technological
University. This research used resources of the Oak Ridge Lead-
ership Computing Facility at the Oak Ridge National Laboratory.
Some of the co-authors are employees of UT-Battelle, LLC, un-
der contract DE-AC05-00OR22725 with the US Department of En-
ergy. Accordingly, the US government retains and the publisher,
by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this
manuscript or allow others to do so, for US Government purposes.
DOE will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

REFERENCES
[1] André R Brodtkorb, Trond R Hagen, Knut-Andreas Lie, and Jostein R Natvig. 2010.

Simulation and visualization of the Saint-Venant system using GPUs. Computing
and Visualization in Science 13, 7 (2010), 341–353.

[2] André R Brodtkorb, Martin L Sætra, and Mustafa Altinakar. 2012. Efficient
shallow water simulations on GPUs: Implementation, visualization, verification,
and validation. Computers & Fluids 55 (2012), 1–12.

[3] Gary W Brunner. 1995. HEC-RAS River Analysis System. Hydraulic Reference
Manual. Version 1.0. Technical Report. Hydrologic Engineering Center Davis
CA.

[4] Gary W Brunner. 2016. HEC-RAS River Analysis System. Hydraulic Reference
Manual. Version 5.0. Technical Report. Hydrologic Engineering Center Davis
CA.

[5] US Costliest. 2018. Tropical Cyclones Tables Updated.
[6] Norman H Crawford and Ray K Linsley. 1966. Digital Simulation in Hydrology:

Stanford Watershed Model 4.
[7] Marc de la Asunción, Manuel J Castro, José Miguel Mantas, and Sergio Ortega.

2016. Numerical simulation of tsunamis generated by landslides on multiple
GPUs. Advances in Engineering Software 99 (2016), 59–72.

[8] Marc De La AsuncióN, José M Mantas, Manuel J Castro, and Enrique Domingo
Fernández-Nieto. 2012. An MPI-CUDA implementation of an improved Roe
method for two-layer shallow water systems. J. Parallel and Distrib. Comput. 72,
9 (2012), 1065–1072.

[9] DHI. 2014. MIKE 11 A Modelling System for Rivers and Channels Reference
Manual. "https://www.mikepoweredbydhi.com/products/mike-11"

[10] Tigstu TSIGE Dullo, Sudershan Gangrade, Alfred J Kalyanapu, Shih-Chieh Kao,
Sheikh K Ghafoor, and Katherine J Evans. 2018. High-resolution modeling
of Hurricane Harvey Flooding for Harris County, TX using a calibrated GPU-
accelerated 2D Flood Model.

[11] Tigstu TSIGE Dullo, Sudershan Gangrade, Ryan Marshall, Sheikh R Islam,
Sheikh K Ghafoor, Shih-Chieh Kao, and Alfred J Kalyanapu. 2017. A large-
scale simulation of climate change effects on flood regime-A case study for the
Alabama-Coosa-Tallapoosa River Basin.

[12] Dean Gesch, Michael Oimoen, Susan Greenlee, Charles Nelson, Michael Steuck,
and Dean Tyler. 2002. The national elevation dataset. Photogrammetric engineer-
ing and remote sensing 68, 1 (2002), 5–32.

[13] R Gommes, J Du Guerny, F Nachtergaele, and R Brinkman. 1998. Potential impacts
of sea-level rise on populations and agriculture.

[14] Paul Grun. 2010. Introduction to infiniband for end users.
[15] Michele Guidolin, Albert S Chen, Bidur Ghimire, Edward C Keedwell, Slobodan

Djordjević, and Dragan A Savić. 2016. A weighted cellular automata 2D inun-
dation model for rapid flood analysis. Environmental Modelling & Software 84
(2016), 378–394.

[16] Trond Runar Hagen, Jon M Hjelmervik, K-A Lie, Jostein R Natvig, and M Ofstad
Henriksen. 2005. Visual simulation of shallow-water waves. Simulation Modelling
Practice and Theory 13, 8 (2005), 716–726.

[17] Mark J Harris, Greg Coombe, Thorsten Scheuermann, and Anselmo Lastra. 2002.
Physically-based visual simulation on graphics hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. Eurographics
Association, Goslar, DEU, 109–118.

[18] David R Judi, Steven J Burian, and Timothy NMcPherson. 2010. Two-dimensional
fast-response flood modeling: Desktop parallel computing and domain tracking.
Journal of Computing in Civil Engineering 25, 3 (2010), 184–191.

[19] Alfred J Kalyanapu, Siddharth Shankar, Eric R Pardyjak, David R Judi, and Steven J
Burian. 2011. Assessment of GPU computational enhancement to a 2D flood
model. Environmental Modelling & Software 26, 8 (2011), 1009–1016.

[20] Shih-Chieh Kao, Scott T DeNeale, and David B Watson. 2019. Hurricane Harvey
Highlights: Need to Assess the Adequacy of Probable Maximum Precipitation
Estimation Methods. Journal of Hydrologic Engineering 24, 4 (2019), 05019005.

[21] Jiri Kraus. 2013. An Introduction to CUDA-Aware MPI. https://devblogs.nvidia.
com/introduction-cuda-aware-mpi/

[22] Asier Lacasta, Mario Morales-Hernández, Javier Murillo, and Pilar García-
Navarro. 2014. An optimized GPU implementation of a 2D free surface simulation
model on unstructured meshes. Advances in engineering software 78 (2014), 1–15.

[23] YG Lai. 2008. SRH-2D version 2: Theory and User’s Manual.
[24] Rob Lamb, Mandy Crossley, and Simon Waller. 2009. A fast two-dimensional

floodplain inundation model. In Proceedings of the Institution of Civil Engineers-
Water Management, Vol. 162. Thomas Telford Ltd, Scotland, 363–370.

[25] Qiuhua Liang and Luke S Smith. 2015. A high-performance integrated hydrody-
namic modelling system for urban flood simulations. Journal of Hydroinformatics
17, 4 (2015), 518–533.

[26] Ryan Marshall, Sheikh K Ghafoor, Alfred J Kalyanapu, Mike Rogers, and Tigstu T
Dullo. 2017. Performance Improvement of a Two-Dimensional Flood Simulation
Application in Hybrid Computing Environments. In 2017 Fifth International
Symposium on Computing and Networking (CANDAR). IEEE, Aomori, Japan, 21–
29.

[27] M Morales-Hernández, A Lacasta, J Murillo, P Brufau, and P García-Navarro.
2015. A Riemann coupled edge (RCE) 1D–2D finite volume inundation and solute
transport model. Environmental Earth Sciences 74, 11 (2015), 7319–7335.

[28] MarioMorales Hernandez, Md Bulbul Sharif, Sudershan Gangrade, Tigstu TDullo,
Shih-Chieh Kao, Alfred J Kalyanapu, Sheikh Ghafoor, and Katherine J Evans. 2019.
High Performance Computing in hydraulics: the new era of flood forecasting. In
Proceedings of Modeling Hydrodynamics for Water Resources (MODWATER 2019).
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Zaragoza, Spain.

[29] Javier Murillo and P García-Navarro. 2010. Weak solutions for partial differential
equations with source terms: Application to the shallow water equations. J.
Comput. Phys. 229, 11 (2010), 4327–4368.

[30] NVIDIA. 2019. Developing a Linux Kernel Module using GPUDirect RDMA.
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

[31] NVIDIA. 2019. GPUDirect. https://developer.nvidia.com/gpudirect
[32] OLCF. 2019. Summit. https://www.olcf.ornl.gov/summit/
[33] Martin Lilleeng Sætra and André Rigland Brodtkorb. 2010. Shallow water simula-

tions on multiple GPUs. In International Workshop on Applied Parallel Computing.
Springer, Berlin, Heidelberg, 56–66.

[34] Luke S Smith and Qiuhua Liang. 2013. Towards a generalised GPU/CPU shallow-
flow modelling tool. Computers & Fluids 88 (2013), 334–343.

[35] V Tayefi, SN Lane, RJ Hardy, and D Yu. 2007. A comparison of one-and two-
dimensional approaches to modelling flood inundation over complex upland
floodplains. Hydrological Processes: An International Journal 21, 23 (2007), 3190–
3202.

[36] Tawatchai Tingsanchali and Winyu Rattanapitikon. 1999. 2-D modelling of
dambreak wave propagation on initially dry bed. Thammasat Int. J. Sc. Tech 4, 3
(1999), 28–37.

[37] Renato Vacondio, Alessandro Dal Palù, Alessia Ferrari, Paolo Mignosa, Francesca
Aureli, and Susanna Dazzi. 2017. A non-uniform efficient grid type for GPU-
parallel Shallow Water Equations models. Environmental modelling & software
88 (2017), 119–137.

[38] Renato Vacondio, Alessandro Dal Palù, and Paolo Mignosa. 2014. GPU-enhanced
finite volume shallow water solver for fast flood simulations. Environmental
modelling & software 57 (2014), 60–75.

[39] Moisés Viñas, Jacobo Lobeiras, Basilio B Fraguela, Manuel Arenaz, Margarita
Amor, José A García, Manuel J Castro, and Ramon Doallo. 2013. A multi-GPU
shallow-water simulation with transport of contaminants. Concurrency and
Computation: Practice and Experience 25, 8 (2013), 1153–1169.

[40] Wikipedia contributors. 2019. Hurricane Harvey — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Hurricane_Harvey

[41] Xilin Xia and Qiuhua Liang. 2016. A GPU-accelerated smoothed particle hydro-
dynamics (SPH) model for the shallow water equations. Environmental modelling
& software 75 (2016), 28–43.

[42] Xilin Xia and Qiuhua Liang. 2018. A new efficient implicit scheme for discretising
the stiff friction terms in the shallow water equations. Advances in water resources
117 (2018), 87–97.

http://energy.gov/downloads/doe-public-access-plan
"https://www.mikepoweredbydhi.com/products/mike-11"
https://devblogs.nvidia.com/introduction-cuda-aware-mpi/
https://devblogs.nvidia.com/introduction-cuda-aware-mpi/
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://developer.nvidia.com/gpudirect
https://www.olcf.ornl.gov/summit/
https://en.wikipedia.org/w/index.php?title=Hurricane_Harvey

	Abstract
	1 Introduction
	2 Related Works
	3 Numerical Schemes
	3.1 FD Scheme
	3.2 FV Scheme

	4 Implementation
	4.1 Input
	4.2 Grids
	4.3 Step Size
	4.4 Halo Exchange
	4.5 Kernels
	4.6 Output

	5 Experimental Setup
	5.1 Key Performance Metrics
	5.2 Benchmark Test Cases
	5.3 Hardware Specifications
	5.4 Configurations

	6 Results and Analysis
	6.1 Scaling
	6.2 Runtime
	6.3 GPUDirect
	6.4 Speedup

	7 Conclusion and Future Work
	8 Acknowledgments
	References

